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Computercodessimulatinghigh enegy densityphysicsconsistof moduledor dis-
tinct physicalprocesses.g.,compressibléydrodynamicandradiationtransport.For
thelatter, onemodelassumesight couplingbetweerradiationandmatter The depen-
dentvariablesare the spectralradiationenegy densityu(z, v, t) andthe mattertem-
peraturel'(x,t), wherez, v, andt¢ denoteposition,frequeng, andtime, respectiely.
The systemis of parabolicform,

Ou = -(DVu) +cpk (B —u), (1)
pey 0T = —cp/ dvk (B —u) (2

In (1)-(2), ¢ is the speedof light, p the massdensity « the opacity andc, the
specificheat. The Planckfunction B o< 4% /(e¥ — 1), wherey oc v/T'. In our context,
p(z,t) is aknawn function. The opacityis a complicatedunctionof p, T', andv. For
“free-freetransitions”,x o« v~3. The coeficient D dependson the meanfree path
¢ = 1/p k and,to mitigateunphysicapropagatiorspeedsa flux limiter is introduced.
Onecommondescriptionis D = ¢/[f(u) + 3/£], wheref = |Vu|/u.

Equationg1)-(2)aresolvedby discretizingthespectrum) < v < oo into G groups
definedby {yj}fzo. Integrationover eachinterval (v;_1,v;), yields the multigroup
equationdn which the integral over v is replacedby a sumof G terms. The system
is difficult to solve becauseof its nonlinearity and wide rangesof time and spatial
scales.Therangesareevidencedby the couplingc p k (= ¢/£) anddiffusion D ~ ¢£
terms.High frequeng radiationis characterizetby £ > 1, i.e., slow couplingandfast
transport.The oppositeholdsfor low frequenciesln simulations the coeficientscan
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vary over 10 to 30 ordersof magnitude.The difficulty is compoundedby nonlinearity
andmaterialcompositionsincethe coeficientsdependbn p andT'.

In thistalk we describea schemeo solve (1)-(2) for multiphysicscodescontaining
aseparatéydrodynamianodule.Sincesuchcodegypically runatthe Courant-limited
sound speedfor our applicationsthetime stepAt is arbitrarily large. Hence we use
backward Eulertemporaldifferencing.After multiplying throughby At, we obtain,

0 = u)—u;+V-(DiVuy) +k; (Bj —u;), j=1,...,G, A3)
G

0 = pe(T°=T)=> k;j(Bj—uy), (4)
j—1

whereD; = At D;, k; = c At pk;, andthe superscripd denoteghe solutionat the
prior time level. Theindex j replaceshe frequeny dependenceThus,u; = [dru
andsimilarly for B, wheretheintegrationis over (v;_1, v;). The coeficientsD; and
k; denoteaveragesover theinterval.

Viewing (3)-(4) asa nonlinearelliptic system,we introducepseudaransientcon-
tinuation (¥tc). Onthe LS of (3), we place (u; — uj)/Ar, where At is the Ptc
parameteandw? is the solutionat the previous pseudo time. Similarly, the LS of (4)
becomes ¢, (T' — T*)/Ar. Thedesiredsolutionis the pseuddime steady-state.

Foreach¥tc step,welinearizeB; = B} + (0B;/0T)|r=r+(T —T*). Remaining
coeficients,e.g.,k;, areevaluatedat T = 7. We avoid afull Newton linearizationin
orderto maintainrobustness(Coeficientssuchasx; areonly known approximately
andaregivenin tatularform.) For thefirst ¥tc step,uj = ug andT* = T°.

Theenegiesu; aredirectly coupledto T' throughthe coeficientsk;. Theequation
for T' doesnot containary spatialderivatives.After linearizing,we solve for T' analyt-
ically andsubstitutetheresultinto thew; equations(Schurcomplement).This yields
G equationsn which eachu; is explicitly coupledto therest. Thelinear systemis of
orderN G, whereN is thenumberof spatialpointsandis of theform

(A—Ml—Mg)U:b. (5)

In (5), A is diagonal,M; containsthe offdiagonaltermsstemmingfrom diffusionand
M, from intergroupcoupling. The parameteil /A7 appearsn both A andb; in both
placesijt contributesto robustness.

We derive conditionson 1/ A+ thatyield diagonaldominanceandnon-nejatve RS,
b > 0. Theconditionsdeterminetheinitial valueof 1/Ar. Our stratgy ensureghat
eachWtc iterate,yieldsa physicallyreasonableesult.In “real” problemstherequire-
mentis crucial sincethe solutionof (5) is usedto obtainT’, which in turn determines
updatef k;, B;, etc. A corventionalNewton iteration may generatean unphysical
value,e.g.,T = —1, causinghecodeto halt.

Thescheméhasbeenimplementedn aradiation-hydrodyname code.Resultswill
be presentedomparingthe ¥'tc schemeawith amorecorventionalone.



